
Geometric phase for non-Hermitian Hamiltonian evolution as anholonomy of a parallel

transport along a curve

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 392002

(http://iopscience.iop.org/1751-8121/41/39/392002)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/39
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 392002 (8pp) doi:10.1088/1751-8113/41/39/392002

FAST TRACK COMMUNICATION

Geometric phase for non-Hermitian Hamiltonian
evolution as anholonomy of a parallel transport along
a curve

N A Sinitsyn1 and Avadh Saxena2

1 Center for Nonlinear Studies and Computer, Computational and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 20 June 2008
Published 2 September 2008
Online at stacks.iop.org/JPhysA/41/392002

Abstract

We develop an interpretation of the geometric phase in evolution with a non-
Hermitian real-valued Hamiltonian by relating it to the angle developed during
the parallel transport along a closed curve by a unit vector triad in the 3D
Minkovsky space. We also show that this geometric phase is responsible
for the anholonomy effects in stochastic processes considered by Sinitsyn and
Nemenman (2007 Europhys. Lett. 77 58001), and use it to derive the stochastic
system response to periodic parameter variations.

PACS numbers: 03.65.Vf, 05.10.Gg, 05.40.Ca

(Some figures in this article are in colour only in the electronic version)

In quantum mechanics, anholonomy effects (i.e. parallel transported vectors not returning to
their initial orientations after a motion along a closed curve) usually can be related to the Berry
phase [1]. Similar effects have been recognized in many other fields and were also related to
several generally defined geometric phases. Examples can be found in classical mechanics
[2, 3], hydrodynamics [4], classical chaos [5], soliton dynamics [6], dissipative kinetics [7–9]
and stochastic processes [10–15].

Simple systems with a minimal number of degrees of freedom have always been of
particular importance. Thus the essential features of the Berry phase in quantum mechanics
can be discussed using a two-level system and the corresponding SU(2) group of its evolution.
Another simple group of transformations, which was widely discussed in relation to geometric
phases, is the SU(1, 1) group, and it is isomorphic to SL(2, R). It is also homomorphic to
the Lorentz group SO(2, 1) [16]. The essential difference with respect to the SU(2) case is
that the quotient manifold SU(1, 1)/U(1) can be identified with a hyperboloid rather than
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a sphere. The corresponding geometric phases have been predicted and studied in several
classical mechanical [2], relativistic [17–20], quantum mechanical and optical applications
[21–24], and were also measured in experiments on polarized light propagation [25–27].

The SU(2) Berry phase anholonomy can be nicely explained by relating it to the rotation
angle of a unit vector triad, associated with a closed curve drawn by a unit Bloch vector
on a sphere [28–30] (for a textbook demonstration see also [31]). Similar formulation was
proved to be useful in other contexts, e.g. in the motion of charged particles in a nonuniform
magnetic field [3], light propagation [32] or a motion in a noninertial frame [31]. In [29], it
was employed to derive new inequalities for the evolution with the SU(2) group. However, to
our knowledge, a similar interpretation of the non-Hermitian SL(2, R) evolution has not been
explicitly presented, although it is expected, considering the well-known relation between the
SL(2, R) group and the Lorenz group.

In this communication we show exactly how the SL(2, R) geometric phase can be
illustrated as the anholonomy of the parallel transport of a vector frame, with a vector triad,
defined in the 3D Minkovsky space with correspondingly defined vector multiplication rules.
An additional goal is to show that the recently introduced geometric phases in purely classical
stochastic kinetics [10, 12] provide one more application of the SL(2, R) geometric phase.
We will use this fact to determine the geometric contribution to particle currents in a model
proposed in [10], assuming time dependence of all parameters.

Consider the evolution of a real two-state vector |u〉 = (u1, u2) according to the equation

d

dt
|u(t)〉 = Ĥ (t)|u(t)〉, H(t) =

(
h11(t) h12(t)

h21(t) h22(t)

)
, (1)

with slowly time-dependent real parameters hij (t), i, j = 1, 2. Formally, the solution of (1)
can be written as a time-ordered exponent of the time integral of Ĥ (t),

|u(t)〉 = Û |u(0)〉, Û = T̂
[
e
∫ t

0 Ĥ (t)dt
]
. (2)

If the matrix Ĥ were traceless (h11 = −h22) the evolution matrix Û would belong to the
group SL(2, R), i.e. the class of 2 × 2 matrices with real entries and a unit determinant. The
requirement to have a zero trace of Ĥ , however, is not crucial for the following discussion,
because the nonzero trace merely shifts the eigenvalues of this matrix but does not change its
eigenvectors. Therefore the geometric phase is not sensitive to this property, so we will refer
to the geometric phase of the group SL(2, R) even if Ĥ has a nonzero trace.

For the future discussion we will also consider the left state vector 〈v| = (v1, v2), evolving
according to

d

dt
〈v| = −〈v|Ĥ , 〈v(t)|u(t)〉 = 1. (3)

Let the matrix Ĥ have two real eigenvalues. For adiabatically slow evolution of parameters,
the right eigenvector corresponding to the larger eigenvalue λ0 will completely dominate over
the other one. If the evolution starts from this eigenvector and parameters pass through a
cycle the final vector will return to the initial one; however it will be multiplied by an overall
factor eφ , i.e. (

u1(T )

u2(T )

)
= eφ

(
u1(0)

u2(0)

)
. (4)

The ‘phase’ φ is not imaginary, however, a lot of analogies with quantum-mechanical Berry
phase can be established. The Berry phase was generalized to a non-Hermitian evolution
[33, 34], and the well-established result is that in the adiabatic limit the phase φ can still
be written as a sum of dynamical and geometric contributions, i.e. φ = φd + φg , where
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Figure 1. Hyperboloid representing possible states of the vector R.

φd = ∫ T

0 λ0(t) dt . The expression for the geometric phase can be written as a parallel

transport condition. For this one should redefine states |u(t)〉 → e− ∫ t

0 λ0(t)dt |u(t)〉, and
〈v(t)| → e

∫ t

0 λ0(t)dt 〈v(t)|. The geometric phase φg can then be expressed as arising from
the condition [30]

〈v(t)|∂tu(t)〉 = 0, (5)

i.e. if we assume that |u(t)〉 = eφg(t)|u({hij }〉, and 〈v(t)| = e−φg(t)〈v({hij }|, where
|u({hij }〉, and 〈v({hij }| are instantaneous gauge-fixed normalized right and left eigenstates,
corresponding to the same eigenvalue λ0({hij }) of the matrix Ĥ , then the geometric phase
after completion of the cyclic evolution reads

φg = −
∮

dt〈v({hij })|∂tu({hij })〉. (6)

Urbantke [30] showed that for a quantum-mechanical spin-1/2 the condition analogous to (5)
has a simple geometrical interpretation in terms of a parallel transport of a unit vector triad.
Now we show that a similar interpretation is possible for the SL(2, R) group, however, the
triad should be defined in the 3D Minkovsky space.

Components of the right and left vectors |u〉 and 〈v| can be used to compose a vector R

such as

R = (x, y, z) = (u1v1 − u2v2, v2u1 + v1u2, v2u1 − v1u2). (7)

The normalization condition in (3) then leads to the following normalization of R,

R ·̃ R = x2 + y2 − z2 = 1, (8)

where we introduced a scalar product operation in the 3D Minkovsky space a ·̃ b ≡
a1b1 + a2b2 − a3b3. Figure 1 shows that vector R can be represented by a point on a
unit hyperboloid immersed in the 3D Minkovsky space. Let us introduce

P = (−2u1u2, u
2
1 − u2

2, u
2
1 + u2

2

)
, Q = (−2v1v2, v

2
1 − v2

2,−
(
v2

1 + v2
2

))
, (9)

and compose two more vectors out of them,

N = (P + Q)/2, S = (P − Q)/2. (10)
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One can check that R, N and Q are mutually orthogonal with respect to the metric (+, +,−),
namely

R ·̃ S = R ·̃ N = S ·̃ N = 0,

R ·̃ R = N ·̃ N = 1,

S ·̃ S = −1.

(11)

Vectors R, N and S comprise a unit triad in the 3D Minkovsky space, such that vectors R and
N are spacelike and S is timelike.

What does the parallel transport condition (5) mean for the evolution of the triad? For
the components of |u〉 and 〈v| this means that v1∂tu1 + v2∂tu2 = 0. Following Urbantke [30]
this suggests that ∂tu1 = −λ1v2, ∂tv1 = −λ2u2, ∂tu2 = λ1v1 and ∂tv2 = λ2u1, with some
variables λ1 and λ2 that depend on the details of the evolution Hamiltonian. Substituting this
into the definition of the triad vectors we find that

d

dt

⎛⎝N

R

S

⎞⎠ =
⎛⎝0 τ 0

−τ 0 �

0 � 0

⎞⎠ ⎛⎝N

R

S

⎞⎠ , τ = −(λ1 + λ2), � = λ2 − λ1. (12)

Conditions (12) have the form of Serret–Frenet equations in 3D Minkovsky spacetime.
According to [35] they describe a unique regular curve parametrized by t, with a curvature �

and torsion τ . From Ṅ = τR and N · R = 0, it follows that τ = Ṅ ·̃ R = −Ṙ ·̃ N, and a
similar relation holds for � in terms of S and Ṙ, which, substituted back in (12), results in

Ṅ = −(N ·̃ Ṙ)R, Ṡ = −(S ·̃ Ṙ)R. (13)

This type of vector evolution is a particular case of the Fermi–Walker vector transport in
special relativity, playing an important role in the theory of the Thomas precession [3, 20]. It
can be interpreted as follows. Suppose that vectors N and S at point R(t + dt) are obtained
by translation of vectors N(R(t)) and S(R(t)) to the point R(t + dt) that is followed by a
projection onto the 2D subspace of vectors orthogonal to R(t + dt). Up to higher order in
dt , one can write N(t) ·̃ R(t + dt) ≈ N ·̃ Ṙ(t) dt , and a similar relation holds for S. Then
N(t + dt) = N(t) − N(t) ·̃ Ṙ(t) dt , and S(t + dt) = S(t) − S(t) ·̃ Ṙ(t) dt . This means that
conditions (5) and (13) correspond to the parallel transport of vectors N and S along the curve
R(t).

Parallel transported vectors generally do not return to the initial ones after a motion along
a closed curve, which represents the anholonomy effect. The relation of such an anholonomy
to the geometric phase can be inferred if we observe how these vectors change under the
gauge transformations |u′〉 = eφ|u〉 and 〈v′| = 〈v| e−φ . This corresponds to P′ = P e2φ and
Q′ = Q e−2φ . The triad transformation then reads

R′ = R,

N′ = N cosh(2φ) + S sinh(2φ),

S′ = N sinh(2φ) + S cosh(2φ),

(14)

which indicates that the vector R is gauge invariant, but the vectors N and S are mixed
with each other like after a boost transformation in the Minkovsky space. The normalization
properties (11), however, remain unaltered. This result means that if after the parallel transport
along a closed curve the vectors N and S become mixed with the angle φ, it corresponds to a
multiplication of the state vector |u〉 by an exponential geometric phase factor exp(φg), where

φg = φ/2. (15)

To derive the geometric phase, it is thus sufficient to compare the rotation of the parallel
transported vectors N and S to a pair of fixed reference vectors. Let us introduce a vector
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product operation (a ×̃ b)i = gikε
ksmasbm, where gik is the metric tensor of the 3D Minkovsky

space with signature (+, +,−), and εksm is the Levy-Civita symbol. It is possible to assign the
fixed triad field e1, e2 and e3 in the Minkovsky space as follows:

e3 = (0, 0, 1), e1 = R ×̃ e3

|R ×̃ e3| , e2 = R ×̃ e1

R
, (16)

where R =
√

x2 + y2 − z2. Explicitly,

e1 =
(

y√
x2 + y2

,
−x√

x2 + y2
, 0

)
, e2 = 1

R

(
xz√

x2 + y2
,

yz√
x2 + y2

,
√

x2 + y2

)
. (17)

It is straightforward to show that

R ·̃ e1 = R ·̃ e2 = e1 ·̃ e2 = 0,

e1 ·̃ e1 = −e2 ·̃ e2 = 1.
(18)

Consequently, e1 and e2 provide a pair of orthogonal unit vectors in the space orthogonal to R.
Vector e1 is spacelike and e2 is timelike. Note that although the corresponding vector fields are
fixed, the local frame e1(R(t)) and e2(R(t)) will depend on t for an observer, moving along a
trajectory R(t). During the parallel transport the pair N, S would also rotate around e1, e2:(

N(t)

S(t)

)
=

(
cosh(φ(t)) sinh(φ(t))

sinh(φ(t)) cosh(φ(t))

)(
e1(R(t))

e2(R(t))

)
. (19)

From the parallel transport conditions, it follows that

N ·̃ dS = 0. (20)

Substituting (19) into (20) and then using (17) we find that this leads to

2 dφg = dφ = −e1 ·̃ de2 = −zy dx − zx dy

R(x2 + y2)
. (21)

The geometric phase acquired after the motion of vector R along a closed contour can then be
written as

φg =
∮

c

A · dR =
∫ ∫

Sc

F, (22)

where A = (− zy

2R(x2+y2)
, zx

2R(x2+y2)
, 0

)
, and in the last step we used the Stokes theorem to

express a contour integral along c as an integral over the surface Sc inside this contour from
the Berry curvature. The latter, on the surface of the unit hyperboloid (R = 1), explicitly
reads

F = − 1
2 (x dy ∧ dz + y dz ∧ dx + z dx ∧ dy). (23)

This curvature 2-form is well known in relation to the groups SU(1, 1) and SL(2, R) [23].
Our derivation, however, presents a simple illustration of the geometric origin of this Berry
curvature.

To switch from the integration over the surface inside R(t) to the integral over the surface
in the parameter space {hij }, note that the vector R satisfies the Bloch equation [25]

dR

dt
= ξ ×̃ R, (24)

where

ξ({hij }) = −(h11 − h22, h12 + h21, h12 − h21). (25)

5
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S B P

Figure 2. Transition rates into and out of the absorbing states S (substrate) and P (product) through
an intermediate bin B-system. The bin can have only zero or one particle inside it.

The quasi-steady-state solution corresponds to

R({hij }) = −ξ({hij })/|ξ({hij })|. (26)

As an example of a new application of SL(2, R) formalism, we consider the geometric
phase that was found in a purely classical stochastic system. The authors of [10] analyzed
stochastic particle fluxes from right to left reservoirs through an intermediate bin system with
exclusion interactions, i.e. allowing at most one particle to be inside the bin. Kinetic rates are
shown in figure 2. The moments generating function of the particle current is defined as3

Z(χ, t) = eS(χ,t) =
∞∑

n=−∞
Pn enχ , (27)

where Pn is the probability of finding a total of n particles transferred from left to right during
the observation time t. The authors of [10] showed that (27) can be expressed as the average
of the evolution operator

Z(χ, t) = 1+T̂
(
e− ∫ t

0 Ĥ (χ,t)dt
)
p(0), (28)

where

Ĥ (χ, t) =
(

k1 + k−2 −k−1 − k2 eχ

−k1 − k−2 e−χ k−1 + k2

)
, (29)

1+ = (1, 1), and p(0) = (p1, p2) is the vector of initial probabilities of the bin states.
Up to a matrix proportional to the unit one, the matrix Ĥ (χ, t) in (29) belongs to a set of
generators of the SL(2, R) group, thus allowing us to apply all known results for this group to
expression (28).

Suppose, parameters k1 and k−2 evolve around a closed contour. From the above
discussion it follows that after completing the cycle, the moments generating function becomes
an exponent of the sum of two terms:

Z(χ) = eSgeom(χ)+Sqst (χ), (30)

where Sqst (χ) is the quasistationary cumulants generating function averaged over all parameter
values along the contour, and Sgeom is the geometric phase contribution responsible for
additional pump currents. It can be written as an integral over the surface inside the contour
created by the curve in the parameter space,

Sgeom(χ) =
∫ ∫

Sc

Fk1,k−2 dk1 dk−2. (31)

3 In [10] the parameter χ is defined to be multiplied by an imaginary unit χ → iχ . It is, however, clear that making
it imaginary played a purely decorative role in the discussion, so we switch to the description of the model using only
real parameters in order to highlight the relation to the SL(2, R) group.
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Having the general result for the SL(2, R) group (22), it is now straightforward to find the
Berry curvature in (31) by a simple change of variables, i.e.

Fk1,k−2(k) = −1

2

[
x(k)

∂(y, z)

∂(k1, k−2)
+ y(k)

∂(z, x)

∂(k1, k−2)
+ z(k)

∂(x, y)

∂(k1, k−2)

]
= e−χ (eχk2 + k−1)

[4κ+eχ + 4κ−e−χ + K2]3/2
, (32)

where the components of R were taken from (25) and (26), κ± ≡ k±1k±2, e±χ ≡ e±χ −1,K ≡∑
m km. The Berry curvature in (32) is the same as the one derived in [10]. It is now easy

to derive other previously unknown components of the Berry curvature tensor by a similar
change of variables:

Fk1,k2(k) = − eχ (k−1 − k−2)

[4κ+eχ + 4κ−e−χ + K2]3/2
, Fk2,k−2(k) = − e−χ (eχk1 + k−1)

[4κ+eχ + 4κ−e−χ + K2]3/2
,

Fk1,k−1(k) = − e−χ (eχk2 + k−2)

[4κ+eχ + 4κ−e−χ + K2]3/2
, Fk−1,k−2(k) = e−χ (k2 − k1)

[4κ+eχ + 4κ−e−χ + K2]3/2
,

Fk−1,k2(k) = − e−χ (eχk1 + k−2)

[4κ+eχ + 4κ−e−χ + K2]3/2
.

(33)

In conclusion, we demonstrated that, by analogy to the SU(2) group, the anholonomy
of the SL(2, R) evolution can also be illustrated as a rotation of a parallel transported triad
along a curve, but in the 3D Minkovsky space. Several theoretical results for the SU(2) group
have been derived using such an interpretation [29], and one can attempt to derive similar
expressions for the non-Hermitian evolution, however, we do not pursue them here. Instead,
we pointed out that the model of a stochastic pump, developed in [10], leads to an evolution
described by the SL(2, R) group, and we used it to derive all components of the Berry curvature
in the parameter space. Our work should help a further understanding of the stochastic pump
effect. For example, the non-adiabatic extension of the SL(2, R) geometric phase has been
studied previously [36]. It should be possible to transfer some of the results of that study to the
problem of driven stochastic transport, and thus extend the recent progress on the stochastic
pump effect in the non-adiabatic regime [13]. It would also be important to find whether the
quantization of stochastic pump currents [37] can be related to topological properties of the
underlying symmetry group of evolution of the moments generating function.
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